

EVOLUTION OF TECHNOLOGY

Single-Use Vs Stainless Steel – Are Hybrid Facilities the Best of Both Worlds?

Contents

- Company introduction
- Single-use systems, who and/or what do we mean?
- Current trends and thinking
- Stages of single-use system integration
- Case studies
- Conclusions

www.zeta.com Page 2 Evolution of Technology

ZETA Group

- Key supplier of biopharmaceutical turnkey projects
- Established in 1989, 30 years of experience
- Headquarters in Lieboch/Graz, Austria, Europe
- Worldwide presence through branches and partners
- Approx 600 employees, of which 350 are engineers

Lieboch, Graz

• 1.700 m² (18,300 sq ft)

Total indoor height: 8,5 m (335")

Crane hook height: 7 m (275")

Crane load: 2 x 8 metric tons

Door height: 7,5 m (295")

Door width: 4,5 m (180")

· Connection to clean media distribution center

430 m² (4,600 sq ft)

Total indoor height: 14 m (550")

Crane hook height: 12 m (475")

Crane load: 1 x 15 metric tons

Door height: 7 m (275")

Door width: 4,8 m (190")

Connection to clean media distribution center

Lebring, Austria

• 1.300 m² (14,000 sq ft)

Total indoor height: 12 m (475")

Offices 250 m² (2,700 sq ft)

Brno, Czech Republic

1.200 m² (12,900 sq ft)

Total indoor height: 6 m (235")

Offices 200 m² (2,100 sq ft)

Business Lines

Engineering & Services

- General Planning
- Plant Installation & Commissioning
- Engineering: Conceptual, Basic, Detail
- Process Development & Scale-Up
- Process Optimization & Retro-Fitting
- CQV
- Maintenance
- Customer Care Services
- 24/7 Service Hotline

Customized Systems

- USP Systems: Fermentation, Media/Buffer Preparation, Harvest
- DSP Systems: Filtration, Chromatography, Viral Inactivation
- Solution/Buffer Preparation Systems
- Formulation Systems
- Clean Media Systems
- CIP/SIP Systems

Automation

- Engineering: Conceptual, Basic, Detail
- Project & Quality Management
- DCS, Batch Management & SCADA System Solutions, SUB and freeze/thaw controls
- Software & Hardware Design & Engineering
- Switchgear and Cabinets
- Installation & Commissioning
- FAT/SAT
- CQV

Products & Components

- Magnetic Agitators
- Freeze & Thaw Systems
- Transfer Panels
- De-dusting Rings

Food Systems

- Pasteurizing Systems for Food Applications
- CIP/SIP Solutions
- Ingredient Adding Systems
- · Aseptic Filling Systems
- Sampling Devices
- Screening Solutions
- Consulting & Engineering

Innovative and Flexible Project Execution

EU CUSTOMER (<\$150M)

GLOBAL CUSTOMER (>\$150M)

GLOBAL CUSTOMER (Sub-Contractor)

ZETA EPCM

Overall Control Procurement SCM Schedule CQV

Appointed EPCM

Overall Control Procurement SCM Schedule CQV

Appointed EPCM

Overall Control Procurement SCM Schedule CQV

CONTRACTOR

EPCM

ZETA Partner

CIVILS	HVAC/ UTILITIES	ELECTRICAL
Conceptual Design	Conceptual Design	Conceptual Design
Basic Design	Basic Design	Basic Design
Detail Design	Detail Design	Detail Design
Construction	Construction	Construction
	Automation	Automation
	Commission	Commission
	Qualification	Qualification
	Conceptual Design Basic Design Detail Design	Conceptual Design Basic Design Detail Design Detail Design Construction Automation Commission

PROCESS	CIVILS	HVAC/ UTILITIES	ELECTRICAL
Conceptual Design	Conceptual Design	Conceptual Design	Conceptual Design
Basic Design	Basic Design	Basic Design	Basic Design
Detail Design	Detail Design	Detail Design	Detail Design
Fabrication	Construction	Construction	Construction
Automation		Automation	Automation
Commission		Commission	Commission
Qualification		Qualification	Qualification

1. Delivering the project on time

2. Being on budget

3. Quality of product and delivery

www.zeta.com Evolution of Technology

Single-Use Systems

- Equipment type
 - Bags buffer, media, additives and ingredients
 - Single-use bioreactors (SUB)
 - Upstream and downstream connectors, tubing sets, manifolds, assemblies, filters, cartridges, columns etc...
- Brands (SUBs)
 - ABEC
 - GE
 - Pall
 - Sartorius
 - Thermo Fisher
 - Merck Millipore etc...

The average responses from developer survey respondents reporting use of various SUS equipment at their facility.

Eric S. Langer & Ronald A. Rader, BioPlan Associates, Inc. in American Pharmaceutical Review, October 2018.

www.zeta.com Page 7 Evolution of Technology

American Pharmaceutical Review – A Perspective

The leading reasons cited as "very important" resulting in adoption of single-use systems were:

- "Decrease risk of cross-product contamination" cited by 46.2%.
- "Eliminating cleaning requirements" 41.2%.
- "Reducing time to get facility up and running" 44.1%.
- "Reduce capital investment in facility & equipment" 40.4%.

The top downsides or potential problems with single-use systems, those cited by >50% of respondents, were:

- "Breakage of bags and loss of production material" cited by 75.0%
- "Leachables and extractables" cited by 73.3%.
- "High cost of disposables" 68.8%.
- "Material incompatibility with process fluids" cited 56.7%
- "We do not want to become vendor-dependent (single-source issues)" also at 56.7%.

When asked about plans for bioreactors purchases, 70.2% of developer/manufacturer respondents reported they would specify single-use bioreactors (SUB) for any new facilities at clinical scale and 51.9% for new commercial manufacturing facilities.

About half of the respondents now expect to see fully single-use facilities in five years.

Eric S. Langer & Ronald A. Rader, BioPlan Associates, Inc. in American Pharmaceutical Review, October 2018.

www.zeta.com Page 8 Evolution of Technology

Trends in the Biopharma Market

- Year-on-year growth
- Development of more potent drugs
- Trend toward personalized medicine
 - » Reduced batch size per drug
 - » Increasing demand for smaller production capacity
- Cost pressure
 - » Diminished likelihood of finding new blockbuster
 - » Increased competition due to biosimilars
- Resurgence of cell and gene therapy
- Quick time to market (fast track projects)
 - » Decision on investment as late as possible
- Biopharma industry is forced to adapt its production facilities to the evolving markets

Production facilities: flexible and cost efficient

A Reality Check on the Commercial Scale

PROS

- Investment costs are much lower
 - Krämer, Müller, SANOFI: 24 40 %
 - Guldager, NNE: max. 30 %
- Project realization is much faster
 - **BUT:** lead times for customized bags:
 - up to 25 weeks
- No CIP/SIP of single use flow path
 - **BUT:** utilities available at commercial scale
- Higher degree of flexibility
 - **BUT:** also stainless steel equipment can be
 - modular design

- Limited industrial usability
 Lack of standards and specifications
- 1 design fits all
 Off-the-shelf products limit process flexibility
- Limited customization service
- Limited project execution
- Automation islands
- Lack of suitable sensors
- Many manual operations
- Range of choice of SUT

Strong need to "mature" SU systems for GMP

Standards and methods similar to those recognized in Stainless Steel systems required for SUT

STAGE I – THE BALLROOM CONCEPT

Standalone Process Units & Highest Flexibility

Character	aracter Definition 2 × 2001 perfusion fermenter		
a			
b	1 × 2001 and 1 × 1,0001 media preparation tank		
С	2 × depth filtration (one for each fermenter)		
d	Ultrafiltration		
е	Continuously operated protein A capture		
f	Low pH viral inactivation		
g	Flow-through intermediate purification and polishing (e.g., AEX and CEX)		
h	$1 \times 200 l$ and $2 \times 1,000 l$ buffer preparation tank		
İ	Viral filtration		
j	Post viral part (formulation, bioburden reduction, filling of bulk drug substance)		
k	Seed lab		
1	Autoclave and Washing		
m	Equipment storage		
n	Cell bank		
0	Frozen storage		
р	Storage room (e.g., process consumables)		
q	Weighing		
ſ	In process control (IPC) lab		
S	Coldroom		

STAGE I – Off-the-Shelf Single-Use Process Units

Allegro™ Single-Use Tangential Flow Filtration Systems Allegro CS4500

Äkta™ Ready System

- Standardized, dedicated SU system
- Stand-alone package solutions
- Limited customization service
- Rigid project execution

STAGE I - Process for GMP Compliant Facilities

- Process flow
- Facility layout
- Interfaces
- Automation
- Validation
- Operability
- Safety
- Maintenance
- Project Management

Case Study 1 - STAGE I - THE BALLROOM CONCEPT

Engineering for Intelligent Clustering of Mobile SU Process Units

Layout optimisation studies

- Personnel & material flow
- HVAC & pressure zone specification
- Provision of
 - structures,
 - platforms
 - media supply points
 - user interfaces

Case Study 1 - STAGE I - THE BALLROOM CONCEPT

Engineering for Intelligent Clustering of Mobile SU Process Units

Benefits:

- Professional set-up for industrial scale production
- Reduces operator errors
- Increases operability & operator safety
- Increases process safety
- Improves routing & tubing management

Case Study 2 - Stage II -

Stainless Steel Support for Intelligent Clustering of SU Process Units

Case Study 3 – Stage II - Hybrid Plant 50, 500 & 2000L SUB

LOCATION: Switzerland

PROJECT NAME: Work platform & automation of single-use bioreactors (SUBs)

SYSTEM CATEGORY: Single-use technology integration

PRODUCT: Engineering, manufacturing and installation of stainless steel work platform

incl. media supply piping in clean rooms & automation/EMSR of SUB

DURATION: 10 months in total, mechanical engineering, automation & SUB

DESCRIPTION: Integration of single use process equipment into a stainless steel plant

Case Study 3 - Stage II - Hybrid Plant 50, 500 & 2000L SUB

- Basic Design
- Detail Design
- Assembly of all components into a functional system
- Static & Dynamic FAT
- Delivery
- Electrical and mechanical Installation
- Programming
- Commissioning
- Qualification

Case Study 3 - Stage II - Engineering Documentation

PID creation for the SUB

- Pipes, tubes, signals, balances, probes
- Stainless steel standard
- Scope of supply
- Interfaces

Case Study 3 - Stage II - Detailed Engineering

Elevation of bioreactor to improve access for operation and to gain space TCU

Avoid "kinking" and trip hazards with intelligent tube routing and management

Case Study 3 - Stage II - Automation: Modular Software Concept

- Creation of a PCS7 standard XDR software for GE in 2017
- Use of only Siemens standard functions from the PCS7 internal library

This standard software and its modular concept is already programmed and qualified according to GAMP 5

PCS7 is fully compatible to CFR part 11

Case Study 3 - Stage II - Built Facility

Full integration of standalone single-use and auxiliary systems

Ensure functionality through static and dynamic FAT at ZETA workshop

GOOD PRACTICE GUIDE:

Single-Use Technology

Published Nov. 2018

STAGE III – CUSTOMIZED SUPPLIER AGNOSTIC CONCEPT

Stainless Steel "Backbone" to Handle Different SU Equipment

- SS backbone
 can serve equipment from different suppliers
- SS components (gassing units, TCU, pump stations) compatible to different SUB sizes
- SUT/SUB supplier
 is interchangeable
 between campaigns

Case Study 4 – Stage III - Hybrid Plant B

LOCATION: Germany

PROJECT NAME: Basic design, detailed design, construction and integration of SUB into

existing plant

SYSTEM CATEGORY: Single-use technology integration

PRODUCT: Engineering, manufacturing and installation of stainless steel filtration unit,

inc. piping, media supply & automation/EMSR of SUB

DURATION: 6 months

DESCRIPTION Integration of single use process equipment into a stainless steel plant

Case Study 4 – Stage III - PFD Development

Case Study 4 – Stage III – 3-D Model

STAGE III – CUSTOMIZED SUPPLIER AGNOSTIC CONCEPT

DSP₁

Automation: Modular Software Concept

USP 2

Excerpt from Automation Architecture

- Process will be structured into unit operations acc. to PFD/P&ID
- Units are the main element in the S88 physical model for batch automation
- SU equipment must also be units in the automation architecture for hybrid systems
- S88 compliant DCS with batch is able to handle automated and manual operating modes:
 - Automated for stainless steel
 - Mainly manual/semi automated for single use units
 - Manual phases will guide the operator and will track human interventions
 - Recipe operation will either call an equipment phase or a manual phase

STAGE IV – CUSTOMIZED SU PROCESS UNITS

SU Components & SS Standards & Integrated Automation

- Application of SS system standards and methods for SUS solutions
- Customized design for single use units
- Supplier agnostic design (hard & software)
- Free choice of components
- Reduced dependency on SU suppliers

STAGE IV - CUSTOMIZED SU PROCESS UNITS

SU Components & SS Standards & Integrated Automation

Bag & manifold details

- Type of connection
- Drawing & SU specification

STAGE IV - CUSTOMIZED SU PROCESS UNITS

AZETH

Automation – Customized Software Structure

Customized Software Engineering

- Software engineering according to customer library
- Integration into existing batch environment
- Testing software FAT & dynamic FAT
- Commissioning
- Project management

Summary - Benefits of Hybrid Plants

Process improvement

Equipment selection "doing more with less" (independent of "material")

- Holistic planning approach
 (Process / building / HAVAC / utilities & periphery)
- Evaluation of SU vs SS technology
 Allows for mix-and-match strategy
- Qualitative

Facility layout, ergonomics, flexibility, turn down ratios, vendor support, material quality and variations

Quantitative

Unit sizes, transfer rates, heat transfer, mixing time, yield, production schedule

Conclusions

Stainless steel facilities are not becoming extinct, but are reducing in numbers:

"Classic, large scale, fixed, stainless steel equipment-based facilities will continue to dominate biopharmaceutical manufacturing, particularly at commercial scales and in terms of manufacturing volume."

- Single-use will continue to grow, particularly at pre- and sub-commercial manufacturing scales.
- Process design and engineering are still heavily relied upon.
- A lot of stainless steel is required in single-use plants.
- One person's SU facility is another person's hybrid facility.

www.zeta.com Page 34 Evolution of Technology

THANK YOU FOR YOUR ATTENTION!

